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ABSTRACT

We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-
Zel’dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample
of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16
X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation
and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sen-
sitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consistent
at the 0.6σ level, with the σv calibration preferring ∼16% higher masses. We use the full SPTCL

dataset (SZ clusters+σv+YX) to measure σ8(Ωm/0.27)0.3 = 0.809± 0.036 within a flat ΛCDM model.
The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 po-
larization (WP) data, but assuming the sum of the neutrino masses is

∑
mν = 0.06 eV, we find

the datasets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for
larger

∑
mν further reconciles the results. When we combine the SPTCL and Planck+WP datasets

with information from baryon acoustic oscillations and supernovae Ia, the preferred cluster masses
are 1.9σ higher than the YX calibration and 0.8σ higher than the σv calibration. Given the scale of
these shifts (∼44% and ∼23% in mass, respectively), we execute a goodness of fit test; it reveals no
tension, indicating that the best-fit model provides an adequate description of the data. Using the
multi-probe dataset, we measure Ωm = 0.299± 0.009 and σ8 = 0.829± 0.011. Within a νCDM model
we find

∑
mν = 0.148± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT

clusters. Allowing both the growth index γ and the dark energy equation of state parameter w to
vary, we find γ = 0.73 ± 0.28 and w = −1.007 ± 0.065, demonstrating that the expansion and the
growth histories are consistent with a ΛCDM Universe (γ = 0.55; w = −1).

Subject headings: cosmic background radiation — cosmology: observations — galaxies: clusters: in-
dividual — large-scale structure of universe
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1. INTRODUCTION

Galaxy cluster surveys provide important insights into
cosmological questions such as the nature of cosmic ac-
celeration (Wang & Steinhardt 1998; Haiman et al. 2001;
Holder et al. 2001; Battye & Weller 2003; Molnar et al.
2004; Wang et al. 2004; Lima & Hu 2007), the Gaus-
sian character of underlying density perturbations (Dalal
et al. 2008; Cayón et al. 2011; Williamson et al. 2011)
and the cosmic growth rate (Rapetti et al. 2013). Be-
cause their distribution in mass and redshift depends on
both the geometry of the Universe and the growth rate of
structure, galaxy clusters are complementary to distance-
based probes such as Type Ia Supernovae (e.g., Sullivan
et al. 2011) and Baryon Acoustic Oscillations (e.g., Per-
cival et al. 2010). Indeed, recent studies demonstrate
the constraining power of galaxy clusters using real clus-
ter samples in X-ray (e.g., Vikhlinin et al. 2009b; Mantz
et al. 2010b), optical (e.g., Rozo et al. 2010) and Sunyaev-
Zel’dovich effect (SZE; e.g., Vanderlinde et al. 2010; Seh-
gal et al. 2011; Benson et al. 2013; Reichardt et al. 2013;
Hasselfield et al. 2013; Planck Collaboration et al. 2014c)
surveys.

Today, the largest available cluster catalogs come from
X-ray and optical surveys. However, galaxy clusters can
also be detected through their thermal SZE signature,
which arises from the interaction of the cosmic microwave
background (CMB) photons with the hot, ionized intra-
cluster medium (Sunyaev & Zel’dovich 1972). The sur-
face brightness of the SZE signature is independent of
redshift, and the integrated signature is expected to be
a low-scatter mass proxy (Barbosa et al. 1996; Holder
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et al. 2001; Motl et al. 2005; Nagai et al. 2007; Stanek
et al. 2010). Therefore, SZE cluster surveys with suffi-
cient angular resolution are expected to generate nearly
mass-limited samples extending to the highest redshifts
at which clusters exist. Dedicated millimeter-wave SZE
surveys over large areas of the sky are being carried
out by the South Pole Telescope (SPT, Carlstrom et al.
2011), the Atacama Cosmology Telescope (Fowler et al.
2007), and Planck (Planck Collaboration et al. 2011).

The first cosmological analysis of an SPT cluster sam-
ple used 21 clusters selected from 178 deg2 of survey data
(Vanderlinde et al. 2010). The observed SPT signal-to-
noise ξ was used as a proxy for cluster mass, assuming a
relationship that was calibrated from simulations. Using
the same cluster sample, Benson et al. (2013) repeated
the cosmological analysis using additional mass calibra-
tion from the X-ray observable YX ≡ MgTX, where Mg

is the intracluster gas mass and TX is the X-ray temper-
ature. The X-ray data were obtained for a sub-sample of
14 clusters using Chandra and XMM-Newton (Andersson
et al. 2011). The combination of the cluster abundance
measurements with CMB anisotropy data improved con-
straints on Ωm and σ8 by a factor of 1.5 over the results
from CMB data alone (WMAP7, Komatsu et al. 2011).
Most recently, Reichardt et al. (2013) analyzed a sample
of 100 cluster candidates extracted from the first 720 deg2

of the SPT-SZ survey, including X-ray data on the same
14 clusters. The uncertainty in the derived cosmological
constraints was dominated by the systematic uncertain-
ties in the mass calibration of the sample.

Given the importance of the cluster mass calibration,
the SPT collaboration has undertaken a comprehensive
follow-up program to make use of multiple mass measure-
ment techniques to better characterize the SPT mass-
observable relation. Our strategy is to obtain direct mass
constraints from X-ray observations and cluster velocity
dispersions, and these will be supplemented with mass
constraints from weak lensing in future studies. Both ve-
locity dispersions and weak lensing exhibit significant un-
certainties on individual cluster mass measurements but
can be studied in detail using N -body studies of struc-
ture formation in order to characterize and correct for
the systematic biases (e.g., White et al. 2010; Becker &
Kravtsov 2011; Saro et al. 2013). Therefore, large ensem-
bles of these measurements can be combined to deliver
precise and accurate mass information. In a complemen-
tary fashion, the X-ray mass proxy YX is tightly corre-
lated with the cluster virial mass, and can be calibrated
using weak lensing or velocity dispersions to provide ac-
curate and reasonably precise single cluster mass mea-
surements (e.g., Sun et al. 2009; Vikhlinin et al. 2009a;
Mantz et al. 2010a). In addition, we expect the small
scatter X-ray observable to play an important role as we
want to constrain not only the masses of our SPT clus-
ters, but also the scatter about the SPT mass-observable
relation. The latter plays a central role in the SPT clus-
ter survey selection, and is critically important for the
cosmological interpretation of the sample (e.g., Lima &
Hu 2005).

In this work, we report a detailed analysis of the
SZE mass-observable relation calibration using the clus-
ter sample of the 720 deg2 SPT-SZ survey together with
a subset of 64 SZE detected galaxy clusters with ad-
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ditional spectroscopic and/or X-ray observations. The
cluster sample with its mass calibration data and exter-
nal cosmological datasets are described in Section 2. In
Section 3 we summarize how velocity dispersions are used
as mass calibrators, and largely follow the recent theo-
retical exploration of this issue (Saro et al. 2013). We
present our analysis method in Section 4, and show how
we tested it on simulated data. In Section 5 we com-
pare the X-ray and velocity dispersion constraints. Be-
cause they are in good agreement, we combine them and
present our best current constraints from SPT clusters
alone assuming a flat ΛCDM model, showing that these
results are in agreement with constraints from external
datasets. We then carry out a joint cosmological anal-
ysis that combines our SPT clusters with external data
to deliver the tightest constraints on cluster masses and
cosmological parameters. We also explore constraints on
the sum of the neutrino masses, cosmic growth, and the
Dark Energy equation of state parameter w. We review
our conclusions in Section 6.

In this work, unless otherwise specified, we assume a
flat ΛCDM cosmology with massless neutrinos. Cluster
masses refer to M500,c, the mass enclosed within a sphere
of radius r500, in which the mean matter density is equal
to 500 times the critical density. The critical density at
the cluster’s redshift is ρcrit(z) = 3H2(z)/8πG, where
H(z) is the Hubble parameter.

2. OBSERVATIONS AND DATA

2.1. South Pole Telescope Observations, Cluster
Catalog, and Scaling Relations

The SPT is a 10 m telescope located within 1 km of the
geographical South Pole. From 2007 to 2011, the tele-
scope was configured to observe in three millimeter-wave
bands (centered at 95, 150, and 220 GHz). The majority
of this period was spent on a survey of a contiguous 2500
deg2 area within the boundaries 20h ≤ R.A. ≤ 7h and
−65◦ ≤ Dec. ≤ −40◦, which we term the SPT-SZ sur-
vey. The survey was completed in November 2011, and
achieved a fiducial depth of 18 µK-arcmin in the 150 GHz
band. Details of the survey strategy and data processing
can be found in Schaffer et al. (2011).

Galaxy clusters are detected via their thermal SZE sig-
nature in the 95 and 150 GHz maps. These maps are cre-
ated using time-ordered data processing and map-making
procedures equivalent to those described in Vanderlinde
et al. (2010), and clusters are extracted from the multi-
band data as in Williamson et al. (2011); Reichardt et al.
(2013). A multi-scale matched-filter approach is used
for cluster detection (Melin et al. 2006). The observable
of the cluster SZE signal is ξ, the detection significance
maximized over all filter scales. Because of the impact
of noise biases, a direct scaling relation between ξ and
cluster mass is difficult to characterize. Therefore, an
unbiased SZE significance ζ is introduced, which is the
signal-to-noise at the true, underlying cluster position
and filter scale (Vanderlinde et al. 2010). For ζ > 2, the
relationship between ξ and ζ is given by

ζ =
√
〈ξ〉2 − 3. (1)

The unbiased significance ζ is related to mass M500,c by

ζ = ASZ

(
M500,c

3× 1014M�h−1

)BSZ
(
E(z)

E(0.6)

)CSZ

(2)

where ASZ is the normalization, BSZ the mass slope, CSZ

the redshift evolution parameter and E(z) ≡ H(z)/H0.
An additional parameter DSZ describes the intrinsic scat-
ter in ζ which is assumed to be log-normal and constant
as a function of mass and redshift. The scaling parame-
ters and the priors we adopt are summarized in Table 1,
and further discussed in Section 4.3.1.

We use SPT-selected clusters for the cosmological clus-
ter number count and mass calibration analysis, de-
scribed in Section 4. For the number counts, we use
a cluster sample identical to the one used in Reichardt
et al. (2013). This sample uses data from the first
720 deg2 of the SPT-SZ survey and is restricted to ξ > 5
and redshift z > 0.3; it contains 100 cluster candidates.
No optical counterparts were found for six of these SZE
detections; we discuss their treatment in the analysis in
Section 4.1.3. The SPT-SZ 720 deg2 survey comprises
5 fields with different depths which are accounted for by
rescaling the SPT ζ-mass relation normalization ASZ for
each field (Reichardt et al. 2013). Our mass calibration
data consists of a sub-sample of 64 SPT clusters with
additional X-ray and/or spectroscopic follow-up data, as
described in Section 2.3 and 2.4. Twenty-two clusters
with velocity dispersion σv measurements lie outside the
SPT-SZ 720 deg2 survey. The depths of these fields and
the corresponding scaling factors for ASZ will be pre-
sented elsewhere together with the analysis of the full
2500 deg2 survey catalog (de Haan et al. in prepara-
tion). These scaling factors are all between 1.08 − 1.27
with a median value of 1.17.

2.2. Optical and Near-Infrared Imaging

The galaxy clusters analyzed here have been followed
up in optical and near infrared in the context of the SPT
follow-up program, as described in Song et al. (2012), to
which we refer the reader for details of the strategy and
data reduction. Briefly, the SPT strategy is to target
all galaxy clusters detected at SZE significance ξ > 4.5
for multiband imaging in order to identify counterparts
to the SZE signal and obtain photometric redshifts. We
also obtain Spitzer/IRAC near-infrared imaging for ev-
ery cluster with SZE significance ξ > 4.8, and we target
those systems at lower ξ which are not optically con-
firmed or have a redshift above 0.9 with ground based
near infrared imaging using the NEWFIRM imager on
the CTIO Blanco 4 m telescope.

2.3. Optical Spectroscopy

We use follow-up optical spectroscopy to measure the
velocity dispersion σv of 63 clusters. Of these, 53 were
observed by the SPT team (Ruel et al. 2014) and 10
have data taken from the literature (Barrena et al. 2002;
Buckley-Geer et al. 2011; Sifón et al. 2013). In Ruel
et al. (2014), four additional clusters with spectroscopic
data are listed, but we choose not to include them in our
analysis as they are all at relatively low redshifts below
z < 0.1 where the SZE mass-observable scaling relation
we adopt is likely not valid. The lowest redshift cluster
entering our mass calibration analysis is SPT-CL J2300-
5331 at z = 0.2623.

Our own data come from a total observation time of
∼ 70 h on the largest optical telescopes (Gemini South,
Magellan, and VLT) in the southern hemisphere; we
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specifically designed these observations to deliver the
data needed for this velocity dispersion mass calibration
study. We obtained low-resolution (R ' 300) spectra
using several different instruments: GMOS40 on Gemini
South, FORS2 (Appenzeller et al. 1998) on VLT Antu,
LDSS3 on Magellan Clay and IMACS/Gladders Image-
Slicing Multislit Option (GISMO41) on Magellan Baade.

Apart from early longslit spectroscopy using the Mag-
ellan LDSS3 spectrograph on a few SPT clusters, the gen-
eral strategy is to design two masks per cluster for multi-
object spectroscopy to get a final average number of 25
member galaxy redshifts per cluster. We typically ob-
tained deep (m? + 1) pre-imaging in i′-band for spectro-
scopic observation to (1) accurately localize galaxies to
build masks for multi-object spectroscopy, and (2) iden-
tify possible giant arcs around cluster cores. This deep
pre-imaging is used together with existing shallower op-
tical imaging and near infrared photometry, where avail-
able, to select galaxy cluster members along the red se-
quence. We refer the reader to Ruel et al. (2014) for a
detailed description of the cluster member selection and
the data reduction.

2.4. X-ray Observations and YX Scaling Relation
Parametrization

Sixteen clusters of our sample have been observed in
X-ray using either Chandra or XMM-Newton. The de-
rived properties of 15 of these clusters are published in
Andersson et al. (2011). This sub-sample corresponds to
the highest SZE significance clusters in the first 178 deg2

of the SPT-SZ survey that lie at z & 0.3. We obtained
Chandra observations of SPT-CL J2106-5844 in a sepa-
rate program whose results are published elsewhere (Fo-
ley et al. 2011). All of these observations have > 1500
source photons within 0.5×r500 and in the 0.5-7.0 keV en-
ergy band. X-ray observations are used to derive the in-
tracluster medium temperature TX and the gas mass Mg.
For a detailed description of the data reduction method,
we refer the reader to Andersson et al. (2011). Note that
there is a calibration offset between temperature mea-
surements from the two satellites (Schellenberger et al.
2014). For our analysis, we adopt priors on the YX-mass
relation that come from an analysis of Chandra data.
Given that only 2/16 systems in this study rely on XMM-
Newton data, and the amplitude of the calibration offset
is ∼30% in temperature for these massive clusters, we ex-
pect an overall temperature bias of ∼4%, corresponding
to a ∼2% bias in our mass scale, assuming that the Chan-
dra-derived temperatures are unbiased. Given that this
is much smaller than the systematic uncertainty in our
YX-mass calibration, we neglect any cross-calibration.

Following Benson et al. (2013) we rely on the X-ray
observable YX ≡ MgTX. For the cosmological analysis
performed in this work we need to evaluate YX as a func-
tion of cosmology and scaling relation parameters. In
practice, for a given set of cosmological and scaling re-
lation parameters, we iteratively fit for r500 and YX(r)
which is then used to estimate the cluster mass.

We adopt a calibrated scaling relation derived from hy-

40 http://www.gemini.edu/node/10625
41 http://www.lco.cl/telescopes-information/magellan/

instruments/imacs/gismo/gismoquickmanual.pdf

drostatic masses at low redshifts (Vikhlinin et al. 2009a):

M500,c

1014M�
= AXh

1/2

(
YX

3× 1014M�keV

)BX

E(z)CX , (3)

where AX is the normalization, BX the slope and CX the
redshift evolution parameter. We assume an intrinsic
log-normal scatter in YX denoted DX and an observa-
tional log-normal uncertainty for each cluster. The fidu-
cial values and priors we adopt for the YX parameters are
discussed in Section 4.3.2 and shown in Table 1.

2.5. External Cosmological Datasets

In addition to our cluster sample, we include external
cosmological datasets such as measurements of the CMB
anisotropy power spectrum, the baryon acoustic oscil-
lations (BAO), Type Ia Supernovae (SNIa), the Hub-
ble constant (H0), and Big Bang nucleosynthesis (BBN).
We use these abbreviations when including the datasets
in the analysis. We refer to the SPT SZE cluster sample
without the follow-up mass information as N(ξ, z)(which
stands for the distribution of the clusters in ξ-z space),
and we refer to the full cluster sample with mass mea-
surements from σv and YX as SPTCL.

We include measurements of the CMB anisotropy
power spectrum from two all-sky surveys. We use
data from the Wilkinson Microwave Anisotropy Probe
(WMAP, 9-year release; Hinshaw et al. 2013) and data
from the Planck satellite (1-year release, including
WMAP polarization data (WP); Planck Collaboration
et al. 2014a,b). The BAO constraints are applied as
three measurements: DV(z = 0.106) = 457 ± 27 Mpc
(Beutler et al. 2011), DV(z = 0.35)/rs = 8.88 ± 0.17
(Padmanabhan et al. 2012), and DV(z = 0.57)/rs =
13.67 ± 0.22 (Anderson et al. 2012); rs is the comov-
ing sound horizon at the baryon drag epoch, DV(z) ≡
[(1 + z)2D2

A(z)cz/H(z)]1/3, and DA is the angular diam-
eter distance. We include distance measurements com-
ing from Type Ia supernovae using the Union2.1 com-
pilation of 580 SNe (Suzuki et al. 2012). We adopt a
Gaussian prior on the Hubble constant H0 = 73.8 ±
2.4 km s−1 Mpc−1 from the low-redshift measurements
from the Hubble Space Telescope (Riess et al. 2011). Fi-
nally we use a BBN prior from measurements of the
abundance of 4He and deuterium which we include as
a Gaussian prior Ωbh

2 = 0.022 ± 0.002 (Kirkman et al.
2003). Note that both the BBN and H0 priors are
only applied when analyzing the cluster samples with-
out CMB data.

3. VELOCITY DISPERSIONS σv AS
MASS CALIBRATORS

Multiple studies highlight the fact that the line-of-
sight velocity dispersion of galaxies within clusters may
be used to measure galaxy cluster masses (e.g., Biviano
et al. 2006; Evrard et al. 2008; White et al. 2010; Mu-
nari et al. 2013; Saro et al. 2013). The motivation to use
velocity dispersions as a mass probe for galaxy clusters
stems from the fact that the galaxy dynamics are unaf-
fected by the complex physics of the intracluster medium.
Therefore, the dominant source of scatter and bias in the
σv-mass scaling relation is related to gravitational dy-
namics of subhalos, an effect that can be studied using
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high-resolution N -body simulations. As we will discuss
in Section 4.3.3, the systematic floor on dynamical mass,
which is due to uncertainties in modeling the velocity
bias, is currently of the order of 15% in mass (equivalent
to 5% in σv).

Saro et al. (2013) used the publicly available galaxy
catalogs produced with the semi-analytic model (De Lu-
cia & Blaizot 2007) from the Millennium simulation
(Springel et al. 2005) to precisely characterize the σv-
mass scaling relation as a function of parameters such
as redshift, number of selected red-sequence galaxy clus-
ter members and aperture size centered on the cluster.
Their approach provides a mapping between σv and clus-
ter mass that includes the effects of galaxy selection, de-
partures from equilibrium and sample size, all of which
can be used to interpret the velocity dispersions avail-
able for our SPT clusters. There are two important, but
opposing effects that may lead to a potential bias: (1)
dynamical friction, which biases the velocity dispersion
low, and (2) interlopers, which for our selection tend to
bias dispersions high. For our selection approach, these
contributions effectively cancel, producing no net bias.
The intrinsic scatter on an individual dynamical mass is
typically 80% due to the random projection of the veloc-
ity ellipsoid along the line of sight and interlopers in the
calculation of velocity dispersion.

Given the large mass uncertainty associated with the
dispersion from an individual cluster, we use a large en-
semble of dispersion measurements for our mass calibra-
tion analysis. Within this context, we should be able
to constrain the normalization ASZ of the SZE ξ-mass
relation to a level where it is dominated by the 15%
systematic uncertainty in the dispersion mass estimates.
However, because the intrinsic scatter in the velocity dis-
persion scaling relation is much larger than the scatter
in the SZE ξ-mass scaling relation, we do not expect to
improve our constraints on the scatter of the SZE ξ-mass
scaling relation using velocity dispersions.

We assume the scatter in σv to be uncorrelated with
the scatter in SZE. In principle, cluster triaxiality might
induce such a correlation; however, for our sample, the
intrinsic scatter in σv is dominated by the effect of inter-
lopers, which do not affect the SZE signal.

We adopt the mass-observable scaling relation for ve-
locity dispersions σv presented in Saro et al. (2013):

M200,c =

(
σv

Aσvh70(z)Cσv

)Bσv
1015M� (4)

where M200,c is the mass expressed relative to the critical
density, Aσv is the normalization, Bσv the slope, and Cσv
the redshift evolution parameter. We express the scatter
in σv as a function of Ngal, the number of spectroscopi-
cally observed cluster galaxies. The scatter is described
by a log-normal distribution of width

Dσv = Dσv0 +DσvN/Ngal (5)

where Dσv0 and DσvN are two parameters extracted from
the simulations. Given that the typical number of spec-
troscopically observed galaxies is small for our sample,
this dependency of the scatter on Ngal is important for
our analysis. The fiducial values and priors adopted for
the parameters are discussed in Section 4.3.3 and shown
in Table 1.

Note that the SZE and X-ray mass scaling relations are
defined in terms of M500,c whereas the dynamical mass is
defined as M200,c. The mass conversion is performed us-
ing the NFW profile (Navarro et al. 1997) and the Duffy
et al. (2008) mass-concentration relation.

4. ANALYSIS METHOD

In this Section we introduce the likelihood model
adopted for analyzing the data. When combining
the cluster experiment with other cosmological probes,
we multiply the individual likelihoods. The multi-
dimensional parameter fit varying all relevant cosmolog-
ical and scaling relation parameters is performed using
a Population Monte Carlo (PMC) algorithm as imple-
mented in the CosmoPMC code (Kilbinger et al. 2011).
In contrast to the widely used Markov Chain Monte
Carlo (MCMC) method, which explores the parameter
space based on an acceptance-rejection algorithm, the
PMC algorithm iteratively fits for the posterior distribu-
tion using samples of points (populations) in parameter
space. This leads to a significant reduction of compu-
tational time as (1) the calculations of the likelihood at
individual points in parameter space are independent and
therefore can be computed in parallel and (2) the over-
all efficiency is higher than when using MCMC as there
are no rejected points. For a detailed description of the
PMC algorithm and its comparison with MCMC see e.g.,
Wraith et al. (2009).

When analyzing the SPTCL sample without CMB data
we fit for up to 18 parameters: 4 SZE, 4 YX, 5 σv scaling
relation parameters, and 5 cosmological parameters (σ8,
Ωm, Ωb, H0, ns); we fix the optical depth because it is
not constrained by the data. When combining with the
CMB dataset from WMAP we also include the optical
depth τ as a free parameter in the fit; when analyzing
Planck data we include further nuisance parameters.

We finally describe the priors that we adopt for each
of the mass-observable scaling relations and explain how
we tested our code using mock data.

4.1. Likelihood Model

The cluster number count analysis in the SZE observ-
able ξ can be separated from the additional mass calibra-
tion in an unbiased way. This approach allows for an easy
comparison and combination of the different mass cali-
brators as we will discuss in Section 4.2. For a detailed
derivation of our likelihood function, see Appendix.

4.1.1. Cluster Mass Function

At each point in the space of cosmological and scaling-
relation parameters we use the Code for Anisotropies
in the Microwave Background (CAMB, Lewis et al.
2000) to compute the matter power spectrum at 180
evenly spaced redshift bins between 0.2 < z < 2. We
then use the fitting function presented in Tinker et al.
(2008) to calculate the cluster mass function dN/dM
for 500 mass bins evenly distributed in log-space be-
tween 1013.5h−1M� ≤ M ≤ 1016h−1M�. This fit-
ting function is accurate at the 5% level across a mass
range 1011h−1M� ≤ M ≤ 1015h−1M� and for redshifts
z ≤ 2.5.

We move the mass function from its native mass and
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redshift space to the observable space in ξ-z:

dN(ξ, z|p)

dξdz
=
∫
dMdzΘ(ξ − 5, z − 0.3)×

P (ξ|M, z,p)⊗ dn(M,z|p)
dM

dV (z)
dz (6)

where dV/dz is the comoving volume within each red-
shift bin, p is a vector containing all scaling relation
and cosmological parameters, and Θ is the Heaviside step
function describing cluster selection in the SZE observ-
able ξ > 5, and observed redshift z > 0.3. The term
P (ξ|M, z,p) describes the relationship between mass and
the SZE observable from the scaling relation (Equations
1 and 2), and contains both intrinsic and observational
uncertainties. In practice, we convolve the mass function
with this probability distribution.

Finally, the logarithm of the likelihood L for the ob-
served cluster counts is computed following Cash (1979).
After dividing up the observable space in small bins, the
number of expected clusters in each bin is assumed to
follow a Poisson distribution. With this the likelihood
function is

lnL(p) =
∑

i

ln
dN(ξi, zi|p)

dξdz
−
∫
dN(ξ, z|p)

dξdz
dξdz, (7)

up to a constant offset, and where i runs over all clusters
in the catalog. For clusters without spectroscopic data,
we integrate the model over redshift weighting with a
Gaussian whose central value and width correspond to
the cluster’s photometric redshift measurement.

The 720 deg2 survey area contains five fields of dif-
ferent depths, see Section 2.1. In practice, we perform
the above calculation for each field rescaling ASZ with
the corresponding factor, and sum the resulting log like-
lihoods.

4.1.2. Mass Calibration

For each cluster in our sample containing additional
mass calibration information from X-ray and/or velocity
dispersions, we include the YX or σv measurement as fol-
lows: At every point in cosmological and scaling relation
parameter space p, we calculate the probability distri-
bution P (M |ξ, z,p) for each cluster mass, given that the
cluster has a measured significance ξ and redshift z:

P (M |ξ, z,p) ∝ P (ξ|M, z,p)P (M |z,p). (8)

In practice, we calculate the probability distribution
P (ξ|M, z,p) from the SZE scaling relation (Equations 1
and 2) taking both intrinsic and observational scatter
into account, and weight by the mass function P (M |z,p),
thereby correcting for Eddington bias. We then calculate
the expected probability distribution in the follow-up ob-
servable(s) which we here call O for simplicity:

P (O|ξ, z,p) =

∫
dM P (O|M, z,p)P (M |ξ, z,p). (9)

The term P (O|M, z,p) contains the intrinsic scatter and
observational uncertainties in the follow-up observable.
We assume the intrinsic scatter in the SZE scaling rela-
tion and the follow-up measurements to be uncorrelated.
For each cluster in the mass calibration sample, we com-
pare the predicted P (O|ξ, z,p) with the actual measure-
ment and extract the probability of consistency. Finally,

we sum the log-likelihoods for all these clusters and add
the result to the number count likelihood (Equation 7).

It is important that any cosmological dependence of
the mass calibration observations be accounted for. In
the case of a single velocity dispersion σv, the measure-
ment comes from the combination of redshift measure-
ments from a sample of cluster galaxies; the cosmological
sensitivity, if any, is subtle. On the other hand, the X-ray
observable YX is calculated from the measured temper-
ature and gas mass within r500, and the limiting radius
and the gas mass are both cosmology dependent. There-
fore, YX has to be extracted from the observations for
each set of cosmological and scaling relation parameters
as described in Section 2.4.

4.1.3. Unconfirmed Cluster Candidates

Out of the 100 cluster candidates in the survey, 6 detec-
tions could not be confirmed by the optical follow-up and
were assigned lower redshift limits based on the depth of
the imaging data (Song et al. 2012). In addition, each
of these unconfirmed candidates has some probability of
being a noise fluctuation.

Our treatment of these candidates takes into account
the false detection rate at the detection signal-to-noise
as well as the expected number of clusters exceeding the
lower redshift bound of the candidate as predicted by the
cluster mass function. We calculate the probability of a
candidate i to be a true cluster according to

P itrue =
Nexpected(ξi, zilow|p)

Nexpected(ξi, zilow|p) +Nfalse detect(ξi)
(10)

where the number of clusters Nexpected above some lower
redshift limit is given by

∫∞
zilow

N(ξi, z|p)dz. The expected

number of false detections as a function of ξ has been es-
timated from simulations and cross-checked against di-
rect follow-up and is assumed to be redshift independent
(Song et al. 2012; Reichardt et al. 2013).

In the cosmological analysis, each of the unconfirmed
candidates is treated like an actual cluster but weighted
with its P itrue. However, the specific treatment of the
unconfirmed candidates has little effect on the cosmolog-
ical and scaling relation parameters; for example, simply
removing these candidates from the catalog leads to neg-
ligible changes in the results.

4.2. Discussion of the Analysis Method

In previous SPT cluster cosmology studies, we have
used a somewhat different method. In that method the
expected number density of clusters as a function of ξ,
YX, and z is calculated on a three-dimensional grid. The
likelihood is evaluated by comparing this prediction to
the cluster sample in a way analogous to Equation 7.
For clusters without YX data the likelihood is integrated
over the full range of YX (Benson et al. 2013).

As we show in the Appendix, the method we em-
ploy in the current analysis is mathematically equiv-
alent to this other method; here we assume uncorre-
lated scatter. For the current application, where we
have σv and YX follow-up measurements, we do not
work in the four-dimensional ξ-YX-σv-z-space, but rather
we treat the number count part of the likelihood in its
ξ-z-space, and the mass calibration part of the likeli-
hood P (O|ξ, z,p) separately. The results obtained with
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this analysis method do not show any sign of biases
when tested against different sets of mock data (see Sec-
tion 4.4). This method is convenient when analyzing a
cluster sample with multiple different mass observables
where only a fraction of the clusters have those observ-
ables. In the limit where every cluster in the survey
has the same follow-up mass measurements, the likeli-
hood presented and used in our previous analyses (Ben-
son et al. 2013; Reichardt et al. 2013) would be more
computationally efficient.

4.3. Priors Used in the Analysis

We present the priors used in our analysis and discuss
their motivation. All priors are also listed in the first
column of Table 1.

4.3.1. Priors on SZE ξ-mass Scaling Relation Parameters

The SZE scaling relation parameters were estimated
from simulations of the SZE sky of about 4000 deg2 in
size (Reichardt et al. 2013). We adopt 30%, 20%, 50%
Gaussian uncertainties on ASZ, BSZ, and CSZ, respec-
tively (e.g., Vanderlinde et al. 2010). For the scatter
DSZ, we adopt a conservative 67% uncertainty (Benson
et al. 2013; Reichardt et al. 2013).

4.3.2. Priors on YX-mass Scaling Relation Parameters

The priors used in the X-ray scaling relation parame-
ters are motivated by published constraints from X-ray
measurements and simulations. The absolute mass scale
of the YX-mass scaling relation has been calibrated using
hydrostatic mass estimates of a sample of 17 low-redshift
(z < 0.3) relaxed clusters (Vikhlinin et al. 2009a). Simu-
lations were used to estimate an upper limit of 4% on the
systematic offset in the YX-mass relation between relaxed
and unrelaxed clusters (Kravtsov et al. 2006) . Also, sim-
ulations predict that biases in hydrostatic mass estimates
are less for relaxed clusters and are of the order of 15%
(Nagai et al. 2007). Therefore, the YX-mass relationship
calibrated from hydrostatic mass of a sample of relaxed
clusters should be in principle applicable to less relaxed
systems.

We adopt the best-fit value of AX = 5.77±0.20 for the
normalization and BX = 0.57± 0.03 for the slope where
uncertainties are statistical only (Vikhlinin et al. 2009a).
The systematic uncertainty on AX was determined by
comparing to weak-lensing mass estimates for a sample
of 10 low-redshift clusters (Hoekstra 2007) . The derived
1σ systematic uncertainty is 9% on the Chandra mass
calibration. Adding this in quadrature to the statistical
uncertainty yields the Gaussian prior AX = 5.77 ± 0.56
we use in this study.

For the redshift evolution parameter, we assume a
Gaussian prior CX = −0.4 ± 0.2. The 50% uncertainty
is motivated by simulations (Kravtsov et al. 2006) and
matches the prior used in the hydrostatic calibration
analysis (Vikhlinin et al. 2009a).

We apply a Gaussian prior DX = 0.12±0.08 on the log-
normal intrinsic scatter. The central value of the prior is
chosen to be consistent with simulations (e.g., Kravtsov
et al. 2006), while the uncertainty is chosen to encompass
the range found in simulations and in measured values in
the literature (Vikhlinin et al. 2009a; Mantz et al. 2010a).

4.3.3. Priors on σv-mass Scaling Relation Parameters

The statistical uncertainty on the normalization Aσv
of the relation is of the order of 0.06% (Saro et al.
2013). However, there is a systematic uncertainty asso-
ciated with the poorly determined galaxy velocity bias b,
and this has been the focus of multiple investigations.
Remember that b = 1 means no bias. For example,
from the analysis of the Millennium simulation (Springel
et al. 2005), a weak velocity bias of 1.02 is claimed (Fal-
tenbacher & Diemand 2006), while Biviano et al. (2006)
derive a bias of 0.95 using gas dynamic simulations (Bor-
gani et al. 2004). Based on the comparison of differ-
ent simulations, Evrard et al. (2008) estimates a bias of
1.00±0.05, and White et al. (2010) derives a value ∼ 1.06
from their own N -body simulation. In more recent stud-
ies comparing different simulations, Wu et al. (2013) and
Gifford et al. (2013) find a spread in velocity bias of the
order of 10%. Taking into account these different results,
we adopt a Gaussian 5% prior on the normalization of
the scaling relation centered at the value given by Saro
et al. (2013): Aσv = 939± 47 km s−1. This corresponds
to a 15% systematic uncertainty floor in the velocity dis-
persion mass estimates used in our analysis. We expect
future studies to help in providing more accurate estima-
tions of the velocity bias.

In our recent presentation of the velocity dispersion
data on the SPT cluster sample (Ruel et al. 2014) we
note a 10% offset in the dispersion normalization of the
dataset as compared to the predicted dispersions (Saro
et al. 2013) when using the previously published SPT
cluster masses (Reichardt et al. 2013). Stated in another
way, this offset is an indication that if the dispersions
were used for mass calibration, then they would lead to
a change in the mass scale of the SPT cluster sample.
This expectation is confirmed in the results presented
below (see Section 5.1).

Saro et al. (2013) find the statistical uncertainties for
the slope Bσv and the evolution term Cσv to be O(10−4)
and O(10−3), respectively, and hence completely neg-
ligible. However, these results do not include poten-
tial systematic uncertainties. We adopt conservative 5%
Gaussian uncertainties on both parameters and apply
Bσv = 2.91 ± 0.15 and Cσv = 0.33 ± 0.02. We confirm
that the width of those priors plays a negligible role in
our analysis by tightening both priors to the levels of the
statistical uncertainties quoted above; the results on all
other parameters remain essentially unchanged.

The effect of interlopers is the dominant contribution
to the intrinsic scatter (Saro et al. 2013) and we assume
a 20% uncertainty on the scatter normalization Dσ0 =
0.2 ± 0.04 as well as a 20% uncertainty on its depen-
dence on the number of observed galaxies DσN = 3±0.6.
The results from our observed velocity dispersion sample
support this approach; we measure the scatter in the ob-
served sample to be Dσv = 0.31±0.03 (Ruel et al. 2014).
In the present analysis we use a parametrization of the
scatter that includes the number of spectroscopically ob-
served galaxies (see Section 3). For the typical number
of observed galaxies in our sample 〈Ngal〉 = 25, we model
the scatter to be Dσv (Ngal = 25) = 0.32, which is in very
good agreement with the direct measurement.

4.3.4. Additional Priors on Cosmological Parameters
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Galaxy clusters are not sensitive to all cosmological
parameters. Therefore, when not including the CMB
dataset in a cosmological analysis, we fix the optical
depth at reionization to the WMAP9 best-fit value τ =
0.089 and we adopt a Gaussian prior on the spectral in-
dex ns = 0.972± 0.013 representing the WMAP9 result.

4.4. Validation of the Analysis Tool using Mock Data

We validate the analysis method using simulated data.
In a first step we test the number count part in SZE
significance and redshift space using simulated cluster
catalogs that match the SPT data but contain orders
of magnitude more clusters; our goal here is to mini-
mize statistical noise so as to resolve possible systematics
in the analysis at a level far below the statistical noise
in our real sample. Our mock generator produces clus-
ters in mass-redshift space, converts the cluster masses
to the SZE observable ξ using Equations 1 and 2 with
log-normal and normal scatter, respectively, and then ap-
plies the survey selection. The crucial part of the analy-
sis - that is the conversion from mass to observable - is
thereby computed differently than in the likelihood code
we use to explore cosmological parameter space.

We generate large catalogs using different sets of input
values and obtain samples containing on the order of 104

clusters. We then run our analysis pipeline on the mock
data using priors equivalent to the ones listed in Table 1;
our tests show that we are able to recover the input val-
ues to within 1σ statistical uncertainties, verifying that
there are no biases in our codes at a level well below the
statistical noise in our real cluster ensemble.

We further analyzed mock catalogs produced using the
analysis pipeline used in our previous analyses (Benson
et al. 2013; Reichardt et al. 2013), recovering the in-
put parameters at the 1σ statistical level. To test the
mass calibration module, we use a subset of 500 clusters
drawn from the SZE mock catalog described above and
additionally convert the cluster masses to X-ray YX and
velocity dispersion σv measurements. We then run our
analysis code on the mass calibration part alone, that
is without using the number count information and use
YX and/or σv, showing that we are able to recover the
input values. Finally we confirm that the combination of
number counts and mass calibration produces unbiased
results by combining the SZE mock catalog with the X-
ray and spectroscopic cluster mass observables. These
tests give us confidence that our code is producing unbi-
ased constraints.

5. RESULTS

In this section, we present the results of our mass cal-
ibration and cosmological analysis. As we discuss in de-
tail, the constraints obtained using σv mass calibration
are statistically consistent with those we obtain using YX,
but the dispersions prefer higher cluster masses. Assum-
ing a flat ΛCDM cosmology, we compare the constraints
obtained from the SPT galaxy clusters and mass cali-
bration with independent cosmological constraints from
CMB anisotropies, and finally combine the datasets in or-
der to obtain tighter cosmological constraints. We then
use the combined datasets to constrain extensions of the
standard cosmological model in which the Dark Energy
equation of state or the sum of neutrino masses are al-

lowed to vary. Finally, we present the first SPT result on
the cosmological growth of structure.

5.1. Using σv and YX as Mass Calibrators

In Table 1, we present the results of the analysis of the
SPT-SZ survey cluster sample and its mass calibration
assuming a flat ΛCDM model. For now we do not include
CMB, BAO, or SNIa data, because we first wish to isolate
the galaxy cluster constraints and the impact of the mass
calibration data. However, we include the BBN and H0

priors, because not all parameters are well constrained
by the cluster data.

We present results using the SPT cluster sample
N(ξ, z) only, N(ξ, z) with YX data, N(ξ, z) with σv data,
and N(ξ, z) with both YX and σv. It is clear that the
additional mass information from σv or YX help in im-
proving the results obtained from N(ξ, z) only. The con-
straints on the SZE scaling relation normalization ASZ,
the scatter in that relation DSZ, and the cosmological
parameter combination σ8(Ωm/0.27)0.3 tighten. The un-
certainty on this parameter reflects the width of the like-
lihood distribution in Ωm-σ8 space in the direction or-
thogonal to the cluster degeneracy (see Figure 1).

There is agreement between the results obtained using
the mass calibrators σv or YX, which provides an indica-
tion that both methods are reliable and that systematics
are under control. The normalization ASZ decreases by
22% when replacing the YX calibration dataset with the
σv dataset. Due to the skewness of the probability distri-
butions with tails towards larger values, the constraints
on ASZ from σv and YX measurements have significant
overlap, with the YX-favored value displaced 1.15σ from
the result obtained from σv (see also Figure 2). The
constraints on the slope BSZ, the redshift evolution pa-
rameter CSZ, as well as the scatter DSZ are not much
affected by the choice of the mass calibrator. We note
that the YX scaling relation is calibrated by observations
at z ∼ 0.3 which is extrapolated to higher redshifts using
priors motivated by simulations, whereas the σv scaling
relation is calibrated to simulations over the full redshift
range. In terms of the cosmological results, both follow-
up methods perform similarly in constraining the fully
marginalized values for Ωm and σ8. However, the YX

calibration does better in constraining σ8(Ωm/0.27)0.3.
Our constraints using SPT clusters with mass calibra-

tion from X-ray YX only are comparable with previously
published results from nearly the same cluster sample
(Reichardt et al. 2013). Note that the X-ray sample
used here contains measurements of YX for two additional
clusters (see Section 2.4). We recover almost identical
constraints on the SZE and X-ray scaling relation pa-
rameters. However, in the Ωm-σ8 plane, the constraints
presented here extend further along the degeneracy di-
rection towards higher values of Ωm. This difference
is due to a prior on the power spectrum normalization
ln(10−10As) = [2.3, 4] that was narrow enough to affect
the cosmological constraints in Reichardt et al. (2013);
we fit for σ8 in the range [0.4, 1.2] which is much broader
than the recovered probability distribution and hence our
choice of prior does not affect our results.

We estimate the effect of potentially larger galaxy
velocity bias (see discussion in Section 3 and 4.3.3)
by loosening our prior on Aσv from the 5% recom-
mended by Saro et al. (2013) to 10% when analyzing
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the N(ξ, z)+σv+BBN+H0 data. There is a broadening
of the uncertainty on ASZ by 25%, and a ∼ 0.3σ shift to a
higher value. The constraint on σ8(Ωm/0.27)0.3degrades
by 14% and shifts only by a negligible amount. In addi-
tion, we examine the impact of tightening the prior on
Aσv to 1%. In this case, we observe improvements on the
constraints on ASZ (28%) and σ8(Ωm/0.27)0.3 (23%).

Because of the consistency of the two calibration
datasets, we combine them into a joint mass calibra-
tion analysis. We observe that the SZE normalization
ASZ remains close to the value favored by the σv mea-
surements, while its 68% confidence region decreases by
roughly 20% compared to the individual results. This
impact on ASZ is the best improvement on the SZE pa-
rameters we observe when combining the mass calibra-
tors. The constraints on Ωm and σ8 lie between the
individual results with similar uncertainties. However,
σ8(Ωm/0.27)0.3 clearly benefits from the combined mass
information, and its uncertainty is 10% (23%) smaller
than when using the individual YX (σv) calibration data.

5.2. ΛCDM Results with WMAP9

We now compare the results from our cluster data
with constraints from CMB anisotropies as obtained from
WMAP9. The probability distributions of the cluster
datasets and WMAP9 overlap, indicating agreement be-
tween both sets of constraints (see also Figure 1). More-
over, the parameter degeneracies in the Ωm-σ8 space for
clusters are nearly orthogonal to the ones of CMB data.
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Figure 1. Likelihood contours (68% and 95%) in Ωm-σ8 space
for SPT clusters with σv and YX (SPTCL), CMB from WMAP9
and Planck+WP, and the combination of clusters with CMB data.
The independent cluster and CMB constraints overlap, and their
approximate orthogonality make them particularly complemen-
tary. We quantify the agreement between SPTCL and WMAP9
(Planck+WP) to be 1.3σ (1.9σ) (see Section 5.2). Accounting for
a single massive neutrino (mν = 0.06 eV) shifts these values to
1.0σ (1.5σ); treating the sum of neutrino masses as a free param-
eter yields 0.7σ (1.1σ).

We quantify the agreement between two datasets by
testing the degree to which their probability distribu-
tions P (x) overlap in some parameter space x. We mea-
sure this by first drawing representative samples of points

{x1} and {x2} from the two probability distributions
P1(x) and P2(x). We then compute the distances be-
tween pairs of sampled points δ ≡ x1 −x2 and estimate
the probability distribution Pδ from this ensemble {δ}.
We then evaluate the likelihood p that the origin lies
within this distribution:

p =

∫

S

dy Pδ(y) (11)

where the space S is that where Pδ < Pδ(0), and Pδ(0)
is the probability at the origin. We convert p to a signifi-
cance assuming a normal distribution. Within the PMC
fitting procedure used to obtain the probability distribu-
tions P , each sample point x is assigned a weight. We
calculate the agreement between two distributions using
the method presented above, assigning each point δ a
weight that is the product of the weights of the points
x1 and x2.

We apply this method in the two-dimensional Ωm-σ8

space. Within our baseline model that assumes mass-
less neutrinos we report good consistency (1.3σ) between
the results from our cluster sample and from WMAP9.
Changing the baseline assumptions to account for one
massive neutrino with mass mν = 0.06 eV decreases the
tension to 1.0σ. We note that this increase in neutrino
mass shifts CMB constraints towards lower values of σ8

by about ∆σ8 ≈ −0.012 while having negligible impact
on the cluster constraints. We fit for the sum of neutrino
masses in Section 5.7; this further reduces the tension.

Given the overlap between the probability distribu-
tions from our clusters and WMAP9 we combine the
datasets to break degeneracies and thereby tighten the
constraints. In Table 2, we show how the combination
of the N(ξ, z) cluster sample with WMAP9 data bene-
fits from the additional mass calibration from σv and/or
YX. It is clear that, even if the cosmological constraints
are dominated by the CMB data, the mass calibration
from either observable leads to tighter constraints on all
four parameters shown in the table. We also observe
that the constraints on the cosmological parameters Ωm,
σ8, and σ8(Ωm/0.27)0.3 obtained when including YX data
are systematically lower by about half a σ than results
obtained without these data; the constraints on ASZ are
higher. These shifts correspond to lower cluster masses;
we will come back to this in Section 5.4.

When adding the WMAP9 data to our full cluster sam-
ple SPTCL we observe shifts in the SZE scaling relation
parameters, as shown in Table 1. There is a decrease in
the SZE normalization ASZ by 19%, and the uncertainty
tightens by 42%. We further observe a notable shift in
the redshift evolution CSZ towards a lower value at the
1σ level. This is due to the degeneracy between CSZ

and Ωm, as the latter also shifts significantly when the
WMAP9 data are added. The remaining scaling rela-
tion parameters do not benefit from the additional data.
Conversely, the SPT cluster data improve the cosmo-
logical constraints from the WMAP9 data by reducing
the uncertainty on Ωm by 36%, on σ8 by 33%, and on
σ8(Ωm/0.27)0.3 by 47%. Figure 1 shows how the combi-
nation of the datasets leads to improved constraints due
to the nearly orthogonal parameter degeneracies of the
individual results (red contours in figure).

Finally, we add data from BAO and SNIa which carry
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Table 2
Impact of σv and/or YX mass calibration on results from SPT clusters N(ξ, z)+WMAP9.

Dataset ASZ Ωm σ8 σ8(Ωm/0.27)0.3

N(ξ, z)+WMAP9 3.59+0.60
−1.04 0.284 ± 0.027 0.823 ± 0.026 0.835 ± 0.047

N(ξ, z)+WMAP9+σv 3.51+0.65
−0.63 0.288 ± 0.022 0.824 ± 0.020 0.840 ± 0.035

N(ξ, z)+WMAP9+YX 3.85+0.62
−0.66 0.273 ± 0.019 0.811 ± 0.019 0.813 ± 0.032

N(ξ, z)+WMAP9+YX+σv 3.79+0.57
−0.63 0.276 ± 0.018 0.812 ± 0.017 0.817 ± 0.027

Note. — These are fully marginalized constraints. The results from
N(ξ, z)+YX+σv+WMAP9 are presented in more detail in Table 1.

additional information on cosmic distances. As expected,
we see a further tightening of the constraints on Ωm =
0.292± 0.011 and H0 = 68.6± 1.0 km s−1 Mpc−1.

5.3. ΛCDM Results with Planck+WP

In Figure 1, we also show the constraints in the Ωm-σ8

plane from Planck+WP and report a mild 1.9σ tension
between our cluster sample and this CMB dataset. The
tension is slightly larger than when comparing the clus-
ters to WMAP9. The Planck+WP data favor a larger
value of σ8 than our cluster sample. Assuming one mas-
sive neutrino with mass mν = 0.06 eV relaxes the tension
to 1.5σ.

We proceed and combine our cluster sample with the
CMB data from Planck+WP. This data combination
prefers a value for σ8 that is about 1σ lower than sug-
gested by the CMB data. Adding our cluster sample to
Planck+WP leads to improvements on the constraints
on Ωm, σ8 and σ8(Ωm/0.27)0.3, all on the order of 15%
(see Table 1, and black/cyan contours in Figure 1).

We add BAO and SNIa data to further improve the cos-
mological constraints, and measure Ωm = 0.297± 0.009,
σ8 = 0.829± 0.011, σ8(Ωm/0.27)0.3= 0.855± 0.016, and
H0 = 68.3±0.8 km s−1 Mpc−1. These represent improve-
ments of 18% (Ωm), 8% (σ8), and 11% (σ8(Ωm/0.27)0.3)
over the constraints from Planck+WP+BAO+SNIa
without SPTCL. In addition, these represent improve-
ments of 18% (Ωm), 31% (σ8), 20% (σ8(Ωm/0.27)0.3) and
20% (H0) over the corresponding parameter uncertain-
ties when using WMAP9 instead of Planck+WP.

5.4. Impact on Cluster Masses

Combining the mass calibration from YX with σv data
and further with CMB data leads to shifts in the SZE
scaling relation parameters which ultimately shift the
mass estimates of the clusters. As shown in Figure 2,
there is a systematic increase of the cluster mass scale as
we move from X-ray to dispersion only calibration, fur-
ther on to YX+σv and finally on to analyses of our SPTCL

dataset in combination with external datasets (remem-
ber that a decrease in ASZ corresponds to an increase
in cluster mass, see Equation 2). Also, it is clear that
the constraints on the SZE normalization ASZ obtained
when including CMB data are much stronger than the
constraints from the cluster data alone. The Gaussian
prior on ASZ is in some tension with the ASZ constraints
after including the CMB data. In this case, we note that
the recovered values of ASZ do not significantly change
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Figure 2. Posterior probability distributions for the normaliza-
tion ASZ of the SZE ζ-mass relation for different combinations
of mass calibration, CMB, and additional datasets. The Gaus-
sian prior is shown by the black dashed curve. Note the system-
atic trend towards lower ASZ values and smaller uncertainty when
adding external cosmological data, corresponding to an increase
in the characteristic scale of SPT cluster masses by ∼44% from
N(ξ, z)+YX (magenta) to SPTCL+CMB+BAO+SNIa (cyan/red).

when removing the prior, because it is much broader than
the recovered constraints.

We quantify the agreement between these distributions
in the space of ASZ in a way equivalent to the one pre-
sented in Section 5.2. We find that the results from both
YX and σv mass calibration are consistent at the 0.6σ
level. There is a mild tension (1.9σ) between mass cali-
bration from YX and SPTCL+Planck+WP+BAO+SNIa,
while the mass calibration from σv is consistent with the
multi-probe dataset at the 0.8σ level. These shifts would
approximately correspond to an increase in the preferred
cluster mass scale by 44% and 23%, respectively, when
using the multi-probe dataset. Note that there are shifts
in BSZ and CSZ when adding CMB data to our cluster
sample which add a slight ξ (or equivalently mass), and
redshift dependence to this comparison of cluster masses.

On average, our cluster mass estimates are higher by
32% than our previous results in Reichardt et al. (2013),
primarily driven by using new CMB and BAO datasets.
Relative to Reichardt et al. (2013), we have updated the
CMB data set from WMAP7 and SPT (Komatsu et al.
2011; Keisler et al. 2011) to Planck+WP (Planck Col-
laboration et al. 2014a,b), and also updated the BAO
dataset from Percival et al. (2010) to a combination of
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three measurements (Beutler et al. 2011; Anderson et al.
2012; Padmanabhan et al. 2012). The new datasets have
led to more precise constraints on the cosmological pa-
rameters, in particular σ8(Ωm/0.27)0.3, and drive shifts
in the preferred cluster mass scale through ASZ, to im-
prove consistency between the cluster data set and the
cosmological constraints. For example, using WMAP9
data instead of Planck+WP+BAO+SNIa leads to an av-
erage 11% decrease of the cluster masses. Finally, we
observe an increase in the slope BSZ as compared to Re-
ichardt et al. (2013) which reduces the mass change to
only ∼ 15% on the high-mass end of the sample.

5.5. Goodness of Fit of Cluster Data

Our analysis to this point has focused on extracting
parameter confidence regions that emerge from differ-
ent combinations of our cluster sample with external
datasets. We observed shifts especially in the SZE scal-
ing relation parameters when switching among the dif-
ferent data combinations. In the following, we investi-
gate whether the adopted SZE mass-observable scaling
relation parametrization is adequate for describing the
cluster sample. We execute two tests: (1) we evalu-
ate the goodness of fit of the SZE selected clusters in
the ξ-z plane, and (2) we compare the predicted val-
ues for the follow-up observables YX and σv to their
actual measurements. Both tests are performed adopt-
ing parameter values at the best-fit location in cosmo-
logical and scaling relation parameter space from the
SPTCL+Planck+WP+BAO+SNIa analysis.

We compare the distribution of the SZE clusters in the
observable ξ-z plane with its prediction. This is done
using a two-dimensional Kolmogorov-Smirnov (KS) test
as described in Press et al. (1992): At the location of each
cluster in ξ and z space, we split the observational space
into four quadrants, and calculate the absolute difference
between the number of clusters and the number predicted
by the model within that area. The largest of these 4×
Ncl values is taken as the maximum difference D between
the data and the model. We characterize this difference
measure by calculating it for 10,000 independent catalogs
that we produce using the best-fit cosmology and scaling
relation parameters. Figure 3 contains a histogram of
the distribution of differences D from the set of catalogs,
and the red line marks the difference for the real sample.
This test indicates that there is a 90% chance of obtaining
a larger difference D than observed in our real dataset.
We conclude that there is no tension between our SPT
cluster sample and the way we model it through the SZE
scaling relation parametrization.

We now go one step further and ask whether there is
tension between the predicted values for the follow-up
observables YX and σv and their actual measurements.
Remember that the predicted probability distributions
are obtained from the observed SZE signal ξ according
to Equation 9. For each cluster, we calculate the per-
centile of the observed value in its predicted distribution.
We get a distribution of percentiles which we convert to
a distribution of pulls (Eadie & Frederick 1983; Lyons
1989) using the inverse error function:

pull =
√

2× erf−1(2× percentile− 1). (12)

This distribution is finally compared to a normal dis-
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Figure 3. The goodness of fit of our cluster dataset to the best-fit
cosmological model is evaluated using a two-dimensional KS test
on the distribution of clusters in SZE signature ξ and redshift z
(see Section 5.5). The blue histogram is the expected distribution
of differences D between the observations and the model for an
ensemble of 10,000 simulated realizations of the best-fit cosmology.
The SPTCL dataset is marked by the red line and exhibits no
tension with the parametrization from the best-fit model.

tribution of unit width centered at zero using the KS
test. In Figure 4 we show the distribution of pulls for
the YX and σv measurements. For each observable, we
show the distribution for two different sets of cosmolog-
ical and scaling relation parameters: (1) the results ob-
tained from clusters with mass calibration only, and (2)
the results from clusters with mass calibration combined
with the external cosmological probes. In all 4 cases, the
KS test provides p-values in the range 0.1 < p < 0.8, in-
dicating no tension between the predicted follow-up mass
observables and their measurements. This is an interest-
ing observation given the shifts we observe in the scal-
ing relation and cosmological parameters when adding
CMB data to the cluster sample. It shows that the
adopted form of the SZE mass-observable scaling rela-
tion has enough freedom to compensate for the shifts in
cosmological parameters. With a larger cluster and mass
calibration dataset we could expect to make a more pre-
cise consistency test of the data and our adopted scaling
relation parametrization.

5.6. Dark Energy Equation of State

The first extension of the ΛCDM model we analyze
is the flat wCDM cosmology which includes the Dark
Energy equation of state parameter w. As the Dark En-
ergy becomes relevant only in the late Universe and af-
fects the cluster mass function through its impact on
the cosmological growth rate and volume we expect our
cluster sample to provide an important contribution in
constraining its nature.

Analyzing our cluster sample using priors on H0 and
BBN, we obtain w = −1.5 ± 0.5. This measurement is
compatible with external constraints from WMAP9+H0

(w = −1.13 ± 0.11) and Planck+WP+BAO (w =
−1.13 ± 0.25, 95% confidence limits; Planck Collabora-
tion et al. 2014b), and consistent with the ΛCDM value
w = −1. Remember that the results obtained from
clusters might in principle be subject to systematics in
the mass estimates, while, on the other hand, the CMB
anisotropy measurements are most sensitive to the char-
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Figure 4. Difference of the X-ray and dispersion follow-up mass
measurements and their predictions from SZE. We show the distri-
bution of pulls (see Section 5.5), and the expected Gaussian distri-
bution in black. The result obtained from clusters alone is shown
in blue, and the combined results from all cosmological probes are
shown in red. A KS test indicates there is no tension between our
cluster mass calibration data and the expected mass distribution
in the best-fit cosmology.

acteristics of the Universe at z ∼ 1100, and the distance
measurements are subject to their own systematics.

Combining datasets breaks degeneracies and leads to
tighter constraints. When adding our SPTCL sample
to the WMAP9+H0 data, we measure w = −1.07 ±
0.09, or an 18% improvement over the constraint with-
out clusters. Combining our cluster sample with
Planck+WP+BAO+SNIa (w = −1.051 ± 0.072) data
leads to an even tighter constraint, and we measure
w = −0.995±0.063 (12% improvement, see also Table 3).

5.7. Massive Neutrinos

We now extend the ΛCDM model and include the sum
of neutrino masses

∑
mν as a free parameter. We will

refer to this model as νCDM in the following, and we
assume three degenerate mass neutrino species.

Massive neutrinos are still relativistic at the epoch
of recombination and hence do not significantly af-
fect the structure of CMB anisotropies (as long as
mν < 0.6 eV for each species, Komatsu et al.
2009). In the late Universe, massive neutrinos con-
tribute to Ωm but do not cluster in structures smaller
than their free streaming length, leading to a lower
σ8. Therefore, results from CMB anisotropy data ex-
hibit a strong degeneracy between

∑
mν and σ8. Us-

ing the Planck+WP+BAO+SNIa data combination we
measure

∑
mν = 0.092 ± 0.058 eV and an upper limit∑

mν < 0.182 eV (95% confidence limit, hereafter CL).
Galaxy clusters are ideal probes for measuring σ8

and therefore represent a valuable piece of information
when constraining the νCDM model. When adding our
SPTCL sample to the dataset, we observe that the mean
of the recovered

∑
mν increases significantly; we mea-

sure
∑
mν = 0.148 ± 0.081 eV, and an upper limit∑

mν < 0.270 eV (95% CL). As discussed earlier, our
cluster sample prefers lower values for σ8 than the CMB
data, which here leads to increased neutrino masses due
to their degeneracy with σ8. The results on νCDM from
the full data combination are also shown in Table 3.

We recalculate the difference between results from
SPTCL and CMB data as in Section 5.2, but we now
adopt our best-fit sum of neutrino masses

∑
mν =

0.148 eV. This decreases the tension to 0.7σ for WMAP9,
and 1.1σ for Planck+WP.

5.8. Testing the Cosmological Growth of Structure

Our constraints on the Dark Energy equation of state
parameter confirm once more that the flat ΛCDM model
provides an excellent fit to the best currently available
cosmological data. However, it still remains unclear
what exactly is causing the accelerating expansion in
the present epoch. Possible explanations include a new
energy component or a modification of gravity on large
scales. While measurements of CMB anisotropies and
cosmic distances (BAO and SNIa) have proven extremely
useful for probing the expansion history of the Universe,
galaxy clusters provide a unique probe for testing its
growth history. Combining these tests allows for an in-
teresting consistency test of General Relativity (GR) on
large scales (e.g., Rapetti et al. 2013).

5.8.1. Parametrized Growth of Structure

We parametrize the linear growth rate of density per-
turbations f(a) at late times as a power law of the matter
density (e.g., Peebles 1980; Wang & Steinhardt 1998)

f(a) ≡ d ln δ

d ln a
= Ωm(a)γ (13)

where γ is the cosmic growth index and δ ≡ δρm/〈ρm〉
is the ratio of the comoving matter density fluctuations
and the mean matter density. Solving for γ and assuming
GR one obtains

γGR ≈
6− 3(1 + w)

11− 6(1 + w)
(14)

where the leading correction depends on the dark energy
equation of state parameter w and so γGR = 0.55 for
a cosmological constant with w = −1. Normalizing the
parametrized cosmic growth factor D(z) ∝ δ(z) at some
high redshift zini we can express it as

Dini(z) =
δ(z)

δ(zini)
= δ(zini)

−1 exp

∫
d ln a Ωm(a)γ (15)

and the parametrized matter power spectrum becomes

P(k, z) = P (k, zini)D
2
ini(z). (16)

Note that the complete wavenumber-dependence is con-
tained in P (k, zini) while the growth factor Dini(z), which
now depends on γ, evolves with redshift only.

In our analysis, we choose an initial redshift of zini = 10
as a starting point for the parametrized growth which
corresponds to an era well within matter domination
when f(a) = 1 is a very good approximation. We mod-
ify the likelihood code presented in Section 4.1.1 so that
the matter power spectrum at redshift zini is provided by
CAMB and then evolves depending on the growth index
γ according to Equations 15 and 16.

We note that this parametrization is in principle de-
generate with a cosmological model containing neutrino
mass as a free parameter; given a particular power spec-
trum constrained by the CMB anisotropies at very high
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Table 3
Constraints on extensions of flat ΛCDM cosmology from the

SPTCL+Planck+WP+BAO+SNIa data combination.

Parameter wCDM νCDM γ+ΛCDM γ+νCDM γ+wCDM

Ωm 0.301 ± 0.014 0.309 ± 0.011 0.302 ± 0.010 0.309 ± 0.012 0.301 ± 0.014

σ8 0.827 ± 0.024 0.799 ± 0.021 0.793+0.046
−0.075 0.796+0.057

−0.080 0.794+0.054
−0.078

H0 (km s−1 Mpc−1) 68.1 ± 1.6 67.5 ± 0.9 68.2 ± 0.8 67.5 ± 0.9 68.3 ± 1.6

w −0.995 ± 0.063 (−1) (−1) (−1) −1.007 ± 0.065∑
mν (eV) (0) 0.148 ± 0.081 (0) 0.143+0.066

−0.100 (0)∑
mν (eV), 95% CL (0) < 0.270 (0) < 0.277 (0)

γ (0.55) (0.55) 0.72 ± 0.24 0.63 ± 0.25 0.73 ± 0.28.

Note. — These are fully marginalized constraints.

redshift, variations in both neutrino mass and γ mod-
ify the low-redshift power spectrum. However, the SPT
sample spans a broad redshift range which should ulti-
mately allow one to differentiate between the two effects.

5.8.2. Constraints on the Cosmic Growth Index

We fit for a spatially flat ΛCDM model with the ad-
ditional degree of freedom γ (we will refer to this model
as γ+ΛCDM). Using our SPTCL sample with BBN and
H0 priors, we get results that are consistent with the
prediction of GR, γGR = 0.55. However, the uncer-
tainty on γ is large, and the 68% confidence interval is
[−0.2, 0.7]. We tighten the constraints by including the
CMB dataset which serves as a high-redshift “anchor”
of cosmic evolution. To isolate the constraining power
clusters have on growth of structure, we choose not to
use the constraints on γ that come from the Integrated
Sachs-Wolfe (ISW) effect, which has an impact on the low
l CMB temperature anisotropy. Regardless, we would
expect the additional constraints on γ from the ISW to
be less constraining than the cluster-based constraints
presented here (see, e.g., Rapetti et al. 2010). We fur-
ther use distance information from BAO and SNIa. As
presented in Table 3, we find γ = 0.72 ± 0.24, which
agrees with the prediction of GR. In Figure 5, we show
the two-dimensional likelihood contours for γ and the
most relevant cosmological parameters Ωm and σ8. The
degeneracy between γ and Ωm is weak. We see a strong
degeneracy with σ8, as would be expected given the de-
pendence of σ8 on growth history.

Our constraints are weaker than those obtained from
an X-ray cluster sample (Rapetti et al. 2013). Using
238 clusters from different X-ray catalogs together with
CMB anisotropy data from the 5-year WMAP release
these authors obtain γ = 0.415± 0.127.

We also consider a γ+νCDM cosmological model,
where we additionally allow a non-zero sum of the neu-
trino masses. There is only a mild degeneracy between γ
and

∑
mν , which does not significantly degrade our con-

straints on cosmic growth or neutrino masses (see upper
panel of Figure 5 and Table 3). However, the best-fit
value for γ shifts by ∼ 0.5σ closer to the GR value.

Finally, we consider a γ+wCDM cosmological model,
where we fix

∑
mν = 0 eV, and allow a varying Dark

Energy equation of state parameter w. In doing so we
can simultaneously account for possible departures from
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Figure 5. γ+ΛCDM: Likelihood contours (68% and 95%) for
the growth index γ and σ8 (top), and γ and Ωm (bottom). The
prediction by GR γGR = 0.55 is indicated by the dashed line. The
strong degeneracy between γ and σ8 is clear. We measure γ =
0.72 ± 0.24, indicating no tension with the growth rate predicted
by GR.

the standard cosmic growth history as well as depar-
tures from the expansion history as described by the
ΛCDM model. As presented in Table 3, the results
show consistency with the fiducial values γGR = 0.55
and wΛCDM = −1. Joint parameter constraints are
shown in the bottom panel of Figure 6. This combined
test confirms that the standard cosmological model ac-
curately describes the evolution of the cosmic expansion
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and structure formation throughout a wide redshift and
distance range.
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The prediction for γ by GR and the ΛCDM value for w are indi-
cated by the lines. The cosmological datasets combined exhibit no
tension with a GR+ΛCDM description of the Universe.

6. SUMMARY

We use an SZE selected galaxy cluster sample from
720 deg2 of the SPT-SZ survey in combination with
follow-up data from optical spectroscopy and X-ray ob-
servations to carry out a calibration of the SPT mass-
observable relation. This work improves on previous
analyses by the inclusion of the velocity dispersion data.

We present a method to fit for the SPT mass-
observable relation through comparison of the SZE ob-
servable to the external calibrators σv and/or YX. The
method accounts for selection effects in the SPT cluster
survey, for intrinsic scatter in the mass-observable scal-
ing relations, for observational uncertainties, and for un-
certainties in the scaling relation parameters. With this
method we compute the likelihood for the cluster counts
in the space of ξ and z, and for the mass calibration using
measurements in the follow-up observables.

Before combining the YX and σv mass calibration
datasets we show that their individual constraints on the
SPT ζ-mass scaling relation parameters are comparable,
agreeing at the 0.6σ level. Given the different nature of
YX and σv and their different calibration schemes, we ar-

gue that this agreement is a useful crosscheck of system-
atics present in either calibrating dataset. Combining the
mass calibration datasets leads to an improvement of the
constraints on ASZ and σ8(Ωm/0.27)0.3. Cosmological
constraints from SPT clusters with external BBN and H0

priors differ from the independent CMB anisotropy con-
straints from WMAP9 (Planck+WP) at the 1.3σ (1.9σ)
level (see Figure 1 and Table 1). Accounting for the im-
pact of one massive neutrino (mν = 0.06 eV) reduced
the differences to 1.0σ (1.5σ).

Combining our SPT cluster sample with CMB data
from WMAP9, we show that the mass calibration from
σv or YX lead to tighter constraints on key cosmologi-
cal parameters; the use of both mass calibration datasets
together furthers tightens these constraints. Throughout
the different combinations of cluster mass calibration and
external data, we observe that the cluster mass scale from
dispersions is higher than the one inferred from YX. As
we summarize in Figure 2, the SZE scaling relation nor-
malization ASZ obtained using the multi-probe dataset is
in better agreement with the σv calibration results (0.8σ)
than with the YX calibration results (1.9σ). Analyzing
the cluster sample with data from Planck+WP, BAO,
and SNIa, we find that the average cluster masses in this
work have increased by ∼32% relative to Reichardt et al.
(2013), primarily driven by the use of new CMB and
BAO datasets, which prefer a ΛCDM cosmology with a
higher σ8(Ωm/0.27)0.3.

Assuming a flat ΛCDM model, and using the
SPT cluster catalog, σv and YX mass calibration,
and external data from Planck+WP, BAO, and
SNIa, we measure Ωm = 0.299 ± 0.009, σ8 =
0.829 ± 0.011, and σ8 (Ωm/0.27)

0.3
= 0.855 ± 0.016.

These correspond to 18% (Ωm), 8% (σ8), and 11%
(σ8(Ωm/0.27)0.3) improvements over the constraints
from Planck+WP+BAO+SNIa without SPTCL.

We execute two goodness of fit tests to evaluate
whether the adopted SZE mass-observable scaling rela-
tion parametrization is adequate to describe our cluster
sample. As shown in Figure 3, there is good agreement
between the distribution of the observed cluster sample
in ξ and z, and the prediction by the model. We also
find good agreement between the predicted SZE mass
estimates, and the follow-up mass measurements, using
either σv and YX (see Figure 4).

We examine an extension of the standard ΛCDM
model by adding the Dark Energy equation of state pa-
rameter w. Our results are all compatible with w =
−1, and our best constraint is w = −0.995 ± 0.063,
which we obtained from our cluster sample in combina-
tion with Planck+WP, BAO, and SNIa (12% improve-
ment after adding SPTCL). We consider another ex-
tension to ΛCDM in which we fit for the sum of neu-
trino masses, and find

∑
mν = 0.148 ± 0.081 eV, with∑

mν < 0.270 eV (95% CL).
We then allow for another additional cosmological de-

gree of freedom by parametrizing the cosmic growth rate.
The growth index is constrained to γ = 0.72±0.24 when
assuming a ΛCDM background. This agrees with the
GR prediction γGR = 0.55, indicating that the growth of
structure is correctly described by GR. We consider the
effect on γ when additionally allowing a non-zero sum of
the neutrino masses, and find only a weak degeneracy be-
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tween the two parameters, with relatively small changes
in the constraints on γ and

∑
mν . Finally, we consider

a γ+wCDM model, and allow both γ and w to vary. We
recover results (γ = 0.73±0.28 and w = −1.007±0.065)
that are consistent with the predictions of the standard
GR+ΛCDM cosmological model.

Velocity dispersions haven proven to be useful follow-
up mass calibrators in our analysis. However, much of
their constraining power relies on a precise knowledge of
the scaling relation normalization Aσv , which we assume
to be calibrated to within 5% from N -body simulations
(Saro et al. 2013). When relaxing this prior to 10% in
an analysis that uses only the SZE clusters and the mea-
sured σv’s, the constraint on the SZE normalization ASZ

degrades by 25%, and the cosmological constraints relax
modestly (14% on σ8(Ωm/0.27)0.3). A better knowledge
of the systematics in the σv mass-observable relation, in
particular the galaxy velocity bias, is therefore crucial
for obtaining better constraints from ongoing and future
galaxy cluster surveys. This improved knowledge could
be obtained with detailed numerical simulations as well
as large spectroscopic datasets.

The next steps in the SPT mass calibration consist of
the inclusion of weak lensing masses and a larger num-
ber of dispersions from an ongoing program on Gemini
focused at z < 0.8 and a complementary program focused
at z > 0.8 on the VLT. In addition, X-ray observations of
a sample of approximately ∼ 100 systems with Chandra
and XMM-Newton are complete. Improved calibration of
the mass-observable relations for YX and σv would lead
to stronger cosmological constraints. Combined analy-
ses of these calibration data together with the full SPT
cluster sample (Bleem et al. 2014) will enable significant
progress in cluster studies of cosmology and structure
formation.
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APPENDIX

ANALYSIS METHOD AND LIKELIHOOD FUNCTION

We show that the analysis method we use in the present work is equivalent to the method used in previous SPT
analyses. Specifically, we show how we separate the mass calibration from the cluster number counts. As presented in
Equation 4 in Benson et al. (2013), the expected number density in terms of ξ, z and the follow-up observable YX is

dN(ξ, YX, z|p)

dξdYXdz
dξdYXdz =

∫
dMP (ξ, YX|M, z,p)P (M, z|p)Θ(ξ − 5, z − 0.3), (A1)

and the likelihood function is evaluated according to Poisson statistics

lnL(p) =
∑

i

ln
dN(ξi, YXi, zi|p)

dξdYXdz
−
∫
dN(ξ, YX, z|p)

dξdYXdz
dξdYXdz, (A2)

up to a constant offset, and where the sum over i runs over all clusters in the sample.
We assume no correlated scatter in the different observables, i.e. we assume that P (ξ, YX|M, z,p) =

P (ξ|M, z,p)P (YX|M, z,p) holds, and transform Equation A1 into two separate factors; this is the analysis method
we use here. In the following, and for ease of reading, we omit z and p (e.g., P (M) ≡ P (M |z,p)), and the selection
function Θ(ξ − 5) as it does not depend on mass for a given cluster with measured ξ. We use Bayes’ theorem twice,
e.g. P (ξ|M)P (M) = P (M |ξ)P (ξ).

dN(ξ, YX, z|p)

dξdYXdz
=

∫
dMP (ξ, YX|M)P (M)

=

∫
dMP (YX|M)P (ξ|M)P (M)

∫
dM ′P (M ′|ξ)

=

∫∫
dMdM ′P (YX|M)P (M |ξ)P (ξ)

P (ξ|M ′)P (M ′)

P (ξ)

=

∫
dMP (YX|M)P (M |ξ)

∫
dM ′P (ξ|M ′)P (M ′)

≡P (YX|ξ, z,p)
dN(ξ, z|p)

dξdz
(A3)

With this, the likelihood function we use in this work is

lnL(p) =
∑

j

lnP (YXj |ξj , zj ,p) +
∑

k

ln
dN(ξk, zk|p)

dξdz
−
∫
dN(ξ, z|p)

dξdz
dξdz (A4)

where the sum over k runs over the full SPT-SZ cluster catalog, and j runs over all clusters with YX measurements,
thereby marginalizing over YX for clusters without X-ray data. Note that the total number of expected clusters∫ dN(ξ,z|p)

dξdz dξdz does not depend on YX. The generalization to include the σv observable is straightforward.


